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1.1 Introduction of KDTree 

 

Since HERB has 24 degrees of freedom1 which create a high-dimensional pose space, if each joint 

orientation is represented as one dimension and thus a pose is represented as a vector, as shown in 

following picture. 

 

 

 

There are times when we want to retrieve poses that meet certain requirements, for instance, we want 

to reach a nearest rest pose, which is a starting pose to many animations, to prepare for next step 

animations. Such search may take very long as the pose library gets huge, if we perform a linear search 

by brutal force. The sheer dimensions could cause the curse of dimensionality. (Chap 2) 

 

When a measure such as a Euclidean distance is defined using many coordinates, there is little 

difference in the distances between different pairs of samples. 

                                                           
1
 may vary on adding or dropping components, and methods of calculation 



One way to illustrate the "vastness" of high-dimensional Euclidean space is to compare the proportion 

of a hypersphere with radius r and dimension d, to that of a hypercube with sides of length 2r, and 

equivalent dimension. 

 

The volume of such a sphere is: . The volume of the cube would be: . As the 

dimension  of the space increases, the hypersphere becomes an insignificant volume relative to that 

of the hypercube. This can clearly be seen by comparing the proportions as the dimension  goes to 

infinity: 

 as . 

 

In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for 

organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, 

such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor 

searches). k-d trees are a special case of binary space partitioning trees. 

The k-d tree is a binary tree in which every node is a k-dimensional point. Every non-leaf node can be 

thought of as implicitly generating a splitting hyperplane that divides the space into two parts, known as 

half-spaces. Points to the left of this hyperplane are represented by the left subtree of that node and 

points right of the hyperplane are represented by the right subtree. The hyperplane direction is chosen 

in the following way: every node in the tree is associated with one of the k-dimensions, with the 

hyperplane perpendicular to that dimension's axis. So, for example, if for a particular split the "x" axis is 

chosen, all points in the subtree with a smaller "x" value than the node will appear in the left subtree 

and all points with larger "x" value will be in the right subtree. In such a case, the hyperplane would be 

set by the x-value of the point, and its normal would be the unit x-axis. 

 



 

Using KDTree, we could potentially minimize the time cost of retrieving the nearest pose, even if we have a huge 

pose library. 

 

1.2 The curse of dimensionality 

 

The curse of dimensionality refers to various phenomena that arise when analyzing and organizing data 

in high-dimensional spaces (often with hundreds or thousands of dimensions) that do not occur in low-

dimensional settings such as the three-dimensional physical space of everyday experience. 

There are multiple phenomena referred to by this name in domains such as numerical analysis, sampling, 

combinatorics, machine learning, data mining and databases. The common theme of these problems is 

that when the dimensionality increases, the volume of the space increases so fast that the available data 

become sparse. This sparsity is problematic for any method that requires statistical significance. In order 

to obtain a statistically sound and reliable result, the amount of data needed to support the result often 

grows exponentially with the dimensionality. Also organizing and searching data often relies on 

detecting areas where objects form groups with similar properties; in high dimensional data however all 

objects appear to be sparse and dissimilar in many ways which prevents common data organization 

strategies from being efficient. 

 

 

1.3 Nearest neighbor search (NNS) 

 

Nearest neighbor search (NNS), also known as proximity search, similarity search or closest point search, 

is an optimization problem for finding closest (or most similar) points. Closeness is typically expressed in 

terms of a dissimilarity function: The less similar are the objects the larger are the function values. 

Formally, the nearest-neighbor (NN) search problem is defined as follows: given a set S of points in a 

space M and a query point q ∈ M, find the closest point in S to q. Donald Knuth in vol. 3 of The Art of 

Computer Programming (1973) called it the post-office problem, referring to an application of assigning 

to a residence the nearest post office. A direct generalization of this problem is a k-NN search, where we 

need to find the k closest points. 

 



 

Most commonly M is a metric space and dissimilarity is expressed as a distance metric, which is 

symmetric and satisfies the triangle inequality. Even more common, M is taken to be the d-dimensional 

vector space where dissimilarity is measured using the Euclidean distance, Manhattan distance or other 

distance metric. However, the dissimilarity function can be arbitrary. One example are asymmetric 

Bregman divergences, for which the triangle inequality does not hold. 

 

 

 

 

1.4 Python Implementation of KDtree 

 

from collections import namedtuple 

from operator import itemgetter 

from pprint import pformat 

 

class Node(namedtuple('Node', 'location left_child right_child')): 

    def __repr__(self): 

        return pformat(tuple(self)) 

 

def kdtree(point_list, depth=0): 

    try: 

        k = len(point_list[0]) # assumes all points have the same dimension 

    except IndexError as e: # if not point_list: 

        return None 

    # Select axis based on depth so that axis cycles through all valid values 

    axis = depth % k 

  



    # Sort point list and choose median as pivot element 

    point_list.sort(key=itemgetter(axis)) 

    median = len(point_list) // 2 # choose median 

  

    # Create node and construct subtrees 

    return Node( 

        location=point_list[median], 

        left_child=kdtree(point_list[:median], depth + 1), 

        right_child=kdtree(point_list[median + 1:], depth + 1) 

    ) 

 

def main(): 

    """Example usage""" 

    point_list = [(2,3), (5,4), (9,6), (4,7), (8,1), (7,2)] 

    tree = kdtree(point_list) 

    print(tree) 

 

if __name__ == '__main__': 

    main() 

 

 

 

1.5 C++ Implementation of KDTree 

 

void KDTree::createTree(std::vector<Photon> &v){ 

 if(v.size() > 0) 

  createTree(&root, v, 0, v.size(), 0); 

} 

// search the nearest n points of given p 

 

my_pq KDTree::searchN(const Vector3 &p, const Vector3 &n, const size_t N){ 

 my_pq res((comparison(p))); 

 



 if(size > 0) 

  searchTree(p, n, N, &root, res, 0); 

 return res; 

} 

 

inline bool compareX(const Photon a, const Photon b){ 

 return (a.position.x < b.position.x); 

} 

 

inline bool compareY(const Photon a, const Photon b){ 

 return (a.position.y < b.position.y); 

} 

 

inline bool compareZ(const Photon a, const Photon b){ 

 return (a.position.z < b.position.z); 

} 

 

 

// recursively create the kdtree 

 

void KDTree::createTree(Node *node,  

  std::vector<Photon> &v, size_t st, size_t ed, int depth){ 

  

 size++; // size of the total tree increase 



  

 // sort the vector depends on the depth 

 switch(depth%3){ 

 case 0: 

  std::sort(v.begin() + st, v.begin() + ed, compareX);//sort comparing X 

  break; 

 case 1: 

  std::sort(v.begin() + st, v.begin() + ed, compareY);//sort comparing Y 

  break; 

 case 2: 

  std::sort(v.begin() + st, v.begin() + ed, compareZ);//sort comparing Z 

  break; 

 } 

 

 // get the median of sorted v 

 // median for KD tree separation 

 size_t mid = (ed + st)/2; 

 // assign it to the map 

 node->photon = &v[mid];  

 // create child recursively 

 if(st < mid){ 

  node->left = new Node(); 

  createTree( node->left, v, st, mid, depth+1); 

 } 



 if(mid+1 < ed){ 

  node->right = new Node(); 

  createTree(node->right, v, mid+1, ed, depth+1); 

 } 

} 

 

// in plane threshould 0.05 

inline bool checkInPlane(const Vector3 &ph,const Vector3&p,const Vector3&n){ 

 return (fabs(dot(ph - p, n)) < 0.05); 

} 

 

// find the farthest point, true if replaced  

inline bool replace(const Vector3 &p,const Vector3& n, my_pq &res, Photon* ph){ 

 if(distance(res.top()->position, p) > distance(p,ph->position)){ 

  if (checkInPlane(ph->position, p,n)){ 

   res.pop(); 

   res.push(ph); 

   return true; 

  } 

 } 

 return false; 

} 

 

 



// search the tree, for n nearest photons 

 

void KDTree::searchTree(const Vector3 &p, const Vector3 &n, const size_t N,  

    const Node *node, my_pq &res, int depth){ 

 

 // if reach the leaf 

 if (node->left == NULL && node->right == NULL) 

 { 

  if(res.size() < N){ 

   res.push(node->photon); 

  } 

  else{ 

   replace(p,n,res,node->photon); 

  } 

  return; 

 } 

 else if(node->left == NULL){ 

  searchTree(p,n,N,node->right,res, depth+1); 

  return; 

 } 

 else if(node->right == NULL){ 

  searchTree(p,n,N,node->left,res, depth+1); 

  return; 

 } 



 

 // split depends on the x/y/z value 

 int id = depth%3; 

 real_t disToPlane = p[id] - node->photon->position[id]; 

 // mark the searched tree, true to find in left, false to find in right 

 bool lt = false;  

 if(disToPlane < 0.0){ 

  searchTree(p,n,N, node->left,res, depth+1); 

 } 

 else{ 

  searchTree(p,n,N,node->right,res, depth+1); 

  lt = true; 

 } 

  

 // unwind the tree 

 if(fabs(disToPlane) < distance(p,res.top()->position) || res.size() < N){ 

  // replace and need to check the other branch 

  if(res.size() < N){ 

   if (checkInPlane(node->photon->position, p,n)) 

    res.push(node->photon); 

  } 

  else 

   replace(p, n,res,node->photon); 

 



  if(lt) 

   searchTree(p,n,N, node->left,res, depth+1); 

  else 

   searchTree(p,n,N,node->right,res, depth+1); 

 } 

 // not found done, just return 

} 
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