

 Nearest Pose Retrieval Based on K-d tree

Contents

1.1 Introduction of KDTree .. 2

1.2 The curse of dimensionality ... 4

1.3 Nearest neighbor search (NNS) ... 4

1.4 Python Implementation of KDtree .. 5

1.5 C++ Implementation of KDTree ... 6

1.6 Reference ... 12

1.1 Introduction of KDTree

Since HERB has 24 degrees of freedom1 which create a high-dimensional pose space, if each joint

orientation is represented as one dimension and thus a pose is represented as a vector, as shown in

following picture.

There are times when we want to retrieve poses that meet certain requirements, for instance, we want

to reach a nearest rest pose, which is a starting pose to many animations, to prepare for next step

animations. Such search may take very long as the pose library gets huge, if we perform a linear search

by brutal force. The sheer dimensions could cause the curse of dimensionality. (Chap 2)

When a measure such as a Euclidean distance is defined using many coordinates, there is little

difference in the distances between different pairs of samples.

1
 may vary on adding or dropping components, and methods of calculation

One way to illustrate the "vastness" of high-dimensional Euclidean space is to compare the proportion

of a hypersphere with radius r and dimension d, to that of a hypercube with sides of length 2r, and

equivalent dimension.

The volume of such a sphere is: . The volume of the cube would be: . As the

dimension of the space increases, the hypersphere becomes an insignificant volume relative to that

of the hypercube. This can clearly be seen by comparing the proportions as the dimension goes to

infinity:

 as .

In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for

organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications,

such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor

searches). k-d trees are a special case of binary space partitioning trees.

The k-d tree is a binary tree in which every node is a k-dimensional point. Every non-leaf node can be

thought of as implicitly generating a splitting hyperplane that divides the space into two parts, known as

half-spaces. Points to the left of this hyperplane are represented by the left subtree of that node and

points right of the hyperplane are represented by the right subtree. The hyperplane direction is chosen

in the following way: every node in the tree is associated with one of the k-dimensions, with the

hyperplane perpendicular to that dimension's axis. So, for example, if for a particular split the "x" axis is

chosen, all points in the subtree with a smaller "x" value than the node will appear in the left subtree

and all points with larger "x" value will be in the right subtree. In such a case, the hyperplane would be

set by the x-value of the point, and its normal would be the unit x-axis.

Using KDTree, we could potentially minimize the time cost of retrieving the nearest pose, even if we have a huge

pose library.

1.2 The curse of dimensionality

The curse of dimensionality refers to various phenomena that arise when analyzing and organizing data

in high-dimensional spaces (often with hundreds or thousands of dimensions) that do not occur in low-

dimensional settings such as the three-dimensional physical space of everyday experience.

There are multiple phenomena referred to by this name in domains such as numerical analysis, sampling,

combinatorics, machine learning, data mining and databases. The common theme of these problems is

that when the dimensionality increases, the volume of the space increases so fast that the available data

become sparse. This sparsity is problematic for any method that requires statistical significance. In order

to obtain a statistically sound and reliable result, the amount of data needed to support the result often

grows exponentially with the dimensionality. Also organizing and searching data often relies on

detecting areas where objects form groups with similar properties; in high dimensional data however all

objects appear to be sparse and dissimilar in many ways which prevents common data organization

strategies from being efficient.

1.3 Nearest neighbor search (NNS)

Nearest neighbor search (NNS), also known as proximity search, similarity search or closest point search,

is an optimization problem for finding closest (or most similar) points. Closeness is typically expressed in

terms of a dissimilarity function: The less similar are the objects the larger are the function values.

Formally, the nearest-neighbor (NN) search problem is defined as follows: given a set S of points in a

space M and a query point q ∈ M, find the closest point in S to q. Donald Knuth in vol. 3 of The Art of

Computer Programming (1973) called it the post-office problem, referring to an application of assigning

to a residence the nearest post office. A direct generalization of this problem is a k-NN search, where we

need to find the k closest points.

Most commonly M is a metric space and dissimilarity is expressed as a distance metric, which is

symmetric and satisfies the triangle inequality. Even more common, M is taken to be the d-dimensional

vector space where dissimilarity is measured using the Euclidean distance, Manhattan distance or other

distance metric. However, the dissimilarity function can be arbitrary. One example are asymmetric

Bregman divergences, for which the triangle inequality does not hold.

1.4 Python Implementation of KDtree

from collections import namedtuple

from operator import itemgetter

from pprint import pformat

class Node(namedtuple('Node', 'location left_child right_child')):

 def __repr__(self):

 return pformat(tuple(self))

def kdtree(point_list, depth=0):

 try:

 k = len(point_list[0]) # assumes all points have the same dimension

 except IndexError as e: # if not point_list:

 return None

 # Select axis based on depth so that axis cycles through all valid values

 axis = depth % k

 # Sort point list and choose median as pivot element

 point_list.sort(key=itemgetter(axis))

 median = len(point_list) // 2 # choose median

 # Create node and construct subtrees

 return Node(

 location=point_list[median],

 left_child=kdtree(point_list[:median], depth + 1),

 right_child=kdtree(point_list[median + 1:], depth + 1)

)

def main():

 """Example usage"""

 point_list = [(2,3), (5,4), (9,6), (4,7), (8,1), (7,2)]

 tree = kdtree(point_list)

 print(tree)

if __name__ == '__main__':

 main()

1.5 C++ Implementation of KDTree

void KDTree::createTree(std::vector<Photon> &v){

 if(v.size() > 0)

 createTree(&root, v, 0, v.size(), 0);

}

// search the nearest n points of given p

my_pq KDTree::searchN(const Vector3 &p, const Vector3 &n, const size_t N){

 my_pq res((comparison(p)));

 if(size > 0)

 searchTree(p, n, N, &root, res, 0);

 return res;

}

inline bool compareX(const Photon a, const Photon b){

 return (a.position.x < b.position.x);

}

inline bool compareY(const Photon a, const Photon b){

 return (a.position.y < b.position.y);

}

inline bool compareZ(const Photon a, const Photon b){

 return (a.position.z < b.position.z);

}

// recursively create the kdtree

void KDTree::createTree(Node *node,

 std::vector<Photon> &v, size_t st, size_t ed, int depth){

 size++; // size of the total tree increase

 // sort the vector depends on the depth

 switch(depth%3){

 case 0:

 std::sort(v.begin() + st, v.begin() + ed, compareX);//sort comparing X

 break;

 case 1:

 std::sort(v.begin() + st, v.begin() + ed, compareY);//sort comparing Y

 break;

 case 2:

 std::sort(v.begin() + st, v.begin() + ed, compareZ);//sort comparing Z

 break;

 }

 // get the median of sorted v

 // median for KD tree separation

 size_t mid = (ed + st)/2;

 // assign it to the map

 node->photon = &v[mid];

 // create child recursively

 if(st < mid){

 node->left = new Node();

 createTree(node->left, v, st, mid, depth+1);

 }

 if(mid+1 < ed){

 node->right = new Node();

 createTree(node->right, v, mid+1, ed, depth+1);

 }

}

// in plane threshould 0.05

inline bool checkInPlane(const Vector3 &ph,const Vector3&p,const Vector3&n){

 return (fabs(dot(ph - p, n)) < 0.05);

}

// find the farthest point, true if replaced

inline bool replace(const Vector3 &p,const Vector3& n, my_pq &res, Photon* ph){

 if(distance(res.top()->position, p) > distance(p,ph->position)){

 if (checkInPlane(ph->position, p,n)){

 res.pop();

 res.push(ph);

 return true;

 }

 }

 return false;

}

// search the tree, for n nearest photons

void KDTree::searchTree(const Vector3 &p, const Vector3 &n, const size_t N,

 const Node *node, my_pq &res, int depth){

 // if reach the leaf

 if (node->left == NULL && node->right == NULL)

 {

 if(res.size() < N){

 res.push(node->photon);

 }

 else{

 replace(p,n,res,node->photon);

 }

 return;

 }

 else if(node->left == NULL){

 searchTree(p,n,N,node->right,res, depth+1);

 return;

 }

 else if(node->right == NULL){

 searchTree(p,n,N,node->left,res, depth+1);

 return;

 }

 // split depends on the x/y/z value

 int id = depth%3;

 real_t disToPlane = p[id] - node->photon->position[id];

 // mark the searched tree, true to find in left, false to find in right

 bool lt = false;

 if(disToPlane < 0.0){

 searchTree(p,n,N, node->left,res, depth+1);

 }

 else{

 searchTree(p,n,N,node->right,res, depth+1);

 lt = true;

 }

 // unwind the tree

 if(fabs(disToPlane) < distance(p,res.top()->position) || res.size() < N){

 // replace and need to check the other branch

 if(res.size() < N){

 if (checkInPlane(node->photon->position, p,n))

 res.push(node->photon);

 }

 else

 replace(p, n,res,node->photon);

 if(lt)

 searchTree(p,n,N, node->left,res, depth+1);

 else

 searchTree(p,n,N,node->right,res, depth+1);

 }

 // not found done, just return

}

1.6 Reference

Wikipedia:

http://en.wikipedia.org/wiki/K-d_tree

